

Première partie : De l'Antiquité à 1869

2019 Année Internationale de la Classification Périodique des Éléments Chimiques

Classification

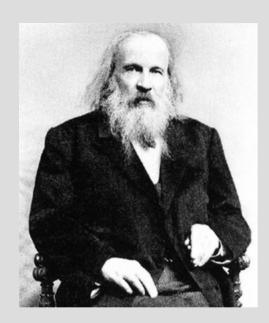
Tendance apparue dès le 17^e siècle, très présente en sciences : chimie organique / minérale / analytique... alcools / acides / cétones / amines / phénols... Guyton de MORVEAU et Antoine LAVOISIER

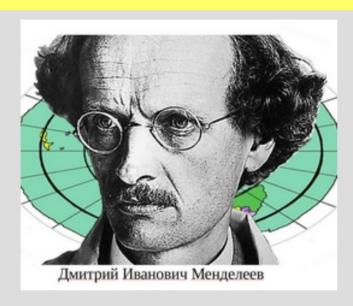
Périodique

Apport de la seconde moitié du 19^e siècle Johann DÖBEREINER / J-B DUMAS / A-É BÉGUYER de CHANCOURTOIS puis John NEWLANDS/ Lothar MEYER / Dimitri MENDELEIEV

Éléments

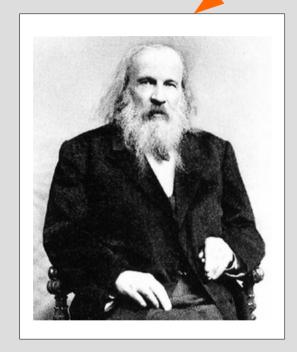
Notion vieille comme le monde qui nous importera pendant toute la durée de l'exposé


Chimiques


20° siècle : découverte de la clé du tableau périodique (N), la notion d'isotopie et enfin la structure des nucléons. Henry MOSELEY / James CHADWICK / Murray GELL-MAN

Question préliminaire

Lequel est Mendeleiev?



A

В

C

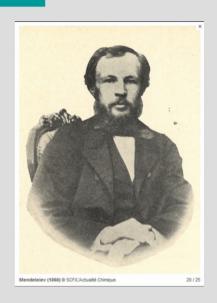
ДМИТРИЙ ИВАНОВИЧ МЕНДЕЛЕЕВ

Auguste Piccard

Dmitri Mendeleiev

Michel-Eugène Chevreul

Dmitri Mendeleiev : jeunesse et études



Dmitri Mendeleiev : jeunesse et études

- 1834 Naissance le 27 janvier (4 février) à TOBOLSK Famille nombreuse (13 ? 14 ? 17 ?) Travaille dans la verrerie de sa mère
- 1849 Installation à St Petersbourg
 Travaille à l'Institut Pédagogique
- 1855 Diplôme universitaire, tuberculose
 - → Simferopol puis Odessa

Dmitri Mendeleiev : jeunesse et études

- 1859 Bourse d'études pour Heidelberg chez Kirchhoff et Bunsen Étudie l'ébullition des liquides
- 1860 Congrès de Karlsruhe.

© Cinzia Ghigliano

De retour du congrès...

De retour du congrès...

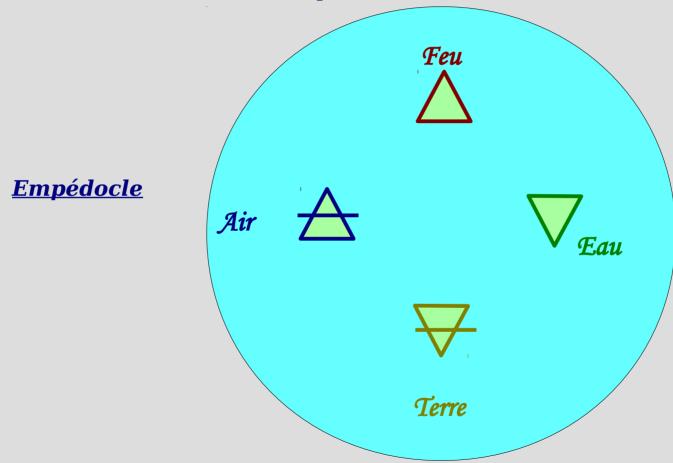
De retour du congrès...

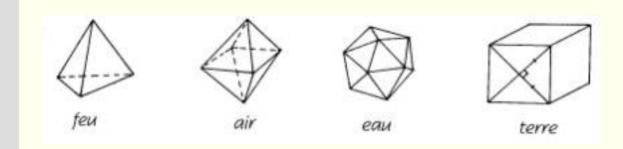
Dmitri Mendeleiev : les années 1860

Et en 1882 mariage avec Anna Ivanovna Popova (Lioubov, Ivan, Marina & Vassili, Polina)

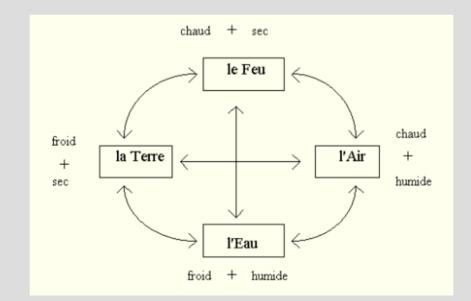
1864 Thèse de doctorat sur les mélanges eau-alcool

1867 Nommé professeur de chimie minérale. Il commence la rédaction de son livre de chimie : « Principes de chimie »


Historique : Les éléments chez les Grecs


Les éléments chez les Grecs

De -600 à 1650 : les quatre éléments



Les éléments chez les Grecs

<u>Platon</u>

Aristote

Les 4 éléments ont la vie dure

Les 4 éléments sont « philosophiques »

...et la quintessence aussi

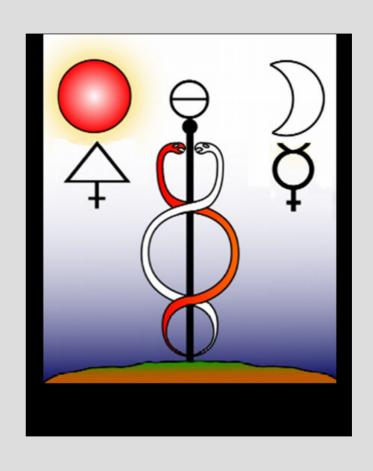
Charles Le Brun La Grande Commande 1674

Luc Besson Le cinquième élément 1997

Les éléments des Alchimistes

Mercure

Propriété métallique Liquidité


Soufre

Combustion Réactivité

<u>Sel</u>

Solubilité Union

Ce sont à la fois des corps matériels et des « principes », des qualités

13 éléments connus de longue date

Au

Ag

Cu

S

Hg C Pb

Sn

Sb

Zn

Fe

As (1200)

Bi (1500)

Ces éléments existent à l'état naturel ou sont faciles à obtenir à partir de leurs minerais.

Ces éléments sont connus sous forme de corps (purs) simples.

Quizz

1 - Pourquoi la devise des étudiants chimistes s'exprime-t-elle par la formule

2 Pourquoi le symbole chimique actuel du mercure est-t-il

Hg?

Réponses

$$1 - S = le soufre$$

Argent liquide

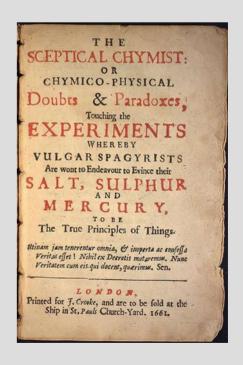
Une référence

ERIC SCERRI

DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY, UCLA

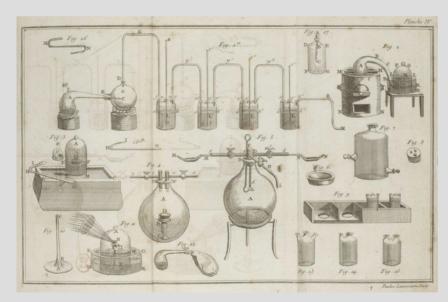
17^e-18^e :La multiplication des éléments

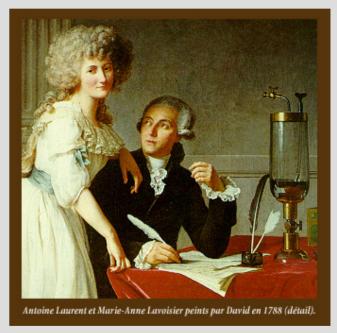
Robert Boyle (1627 - 1691)


XVII^e siècle : le nombre de substances augmente et il devient de + en + difficile de les réduire au nombre de 3 ou 4

Robert Boyle

- → Refuse les 4 éléments
- → Propose une nouvelle définition : élément = indécomposable


Simple bodies are the ultimate terms of the decomposition of compounds


18^e L'apport de Lavoisier

Antoine-Laurent de Lavoisier (1743-1794)

- → Reprend la définition de Boyle : élément = indécomposable
- → Systématise l'emploi de la balance : Rien ne se perd...
- → Propose une classification : voir diapo suivante

Traité élémentaire de chimie, 1789

Antoine-Laurent de Lavoisier et sa femme Marie-Anne Paulze

1789 Traité élémentaire de chimie

Dase du gaz minaminable. Soufre. Phosphore Phosphore. Substances simples, non métalliques, oxydables Carbone..... Charbon pur. Radical muriatique.... Inconnu. et acidifiables. Radical fluorique Inconnu. Radical boracique.... Inconnu. Antimoine Antimoine. Argent Argent. Arsenic..... Arsenic. Bismuth..... Bismuth. Cobalt..... Cobalt. Cuivre. Etain. Substances simples, Fer. métalliques, Manganèse Manganèse. oxydables Mercure. et acidifiables. Molybdène..... Molybdène. Nickel.

1789 Traité élémentaire de chimie

TABLEAU DES SUBSTANCES SIMPLES.

the state of the state of	NOMS NOUVEAUX.	NOMS ANCIENS CORRESPONDANTS.					
Har sine and	Lumière	Lumière.					
Substances simples qui appartiennent	Calorique	Chaleur. Principe de la chaleur. Fluide igné. Feu.					
aux trois règnes, et qu'on peut regarder comme es éléments des corps.	Oxygène	Matière du feu et de la chaleur. Air déphlogistiqué. Air empiréal. Air vital. Base de l'air vital.					
estas Alexadia Présidade en	Azote	Gaz phlogistiqué. Mofette. Base de la mofette.					
a emilion - m	Hydrogène	(Car inflammable					

Quizz

3 - À qui sont dus les symboles chimiques utilisés de nos jours pour désigner les éléments :

Lavoisier (1743-1794) ?

Berzélius (1779 – 1848) ?

Mendeleiev (1834 - 1907) ?

Réponse :

Lavoisier, 1782

$$(a \bigcirc 7) + (2 a b \nabla + \frac{a b}{q} \nabla) + (\frac{a b}{s} \bigoplus + \frac{a b}{t} \triangle F)$$

Berzelius, 1813

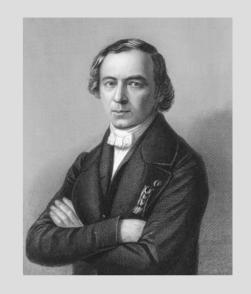
Noms des	Formules	« Poids de l'atome » (23)			
substances	- Communes	0 = 100	H = 1		
Hydrogène	H	6,2398	0,50		
	#	12,4795	1,00		
Carbone	\mathbf{c}	76,44	6,13		
Eau	i	112,48	9,01		
Ac. sulfurique (24).	Š	501,16	40,16		
Soude (25)	Na	390,90	31,32		
Chlor. sodique (26).	Na Cl	733,55	58,78		
Alcool	CH ³O	290,31	23,26		

Classification par 3

1817 et 1829 Johann DÖBEREINER

Remarque des analogies entre éléments de masses très différentes et les classe en « **triades** »

Calcium	Strontium	Baryum			
40	88	137			
Chlore	Brome	lode			
35,5	80	127			
Lithium	Sodium	Potassium			
7	23	39			



Classification par 4

1859 Jean-Baptiste DUMAS

Pharmacien à Genève, puis chimiste à Paris, il a comme élève Louis Pasteur Il développe les observations de Döbereiner.

Fluor	Chlore	Brome	lode
Magnésium	Calcium	Strontium	Baryum

Au XIX^e siècle on va découvrir de nombreux éléments :

- découverte du pouvoir de l'électricité
- découverte des propriétés optiques (spectres)

C'est en particulier la mode des noms issus de l'astronomie

Quizz

4 – À quelle date a été découvert l'URANIUM :

1789 ou 1939?

5 – Quel élément parmi les suivants a été découvert ailleurs que sur la Terre :

Pu - Kr - Np - He - Se - U?

Réponses

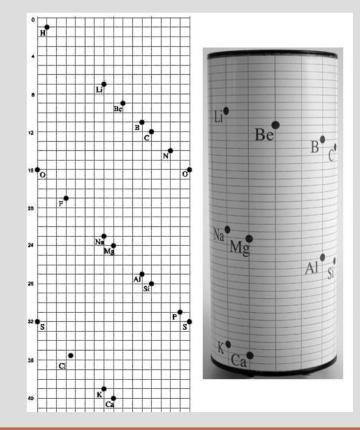
4 - Découverte de l'URANIUM:

1789 par Martin KLAPROTH

1868 L'hélium est découvert dans le rayonnement solaire par Jules Janssen lors de l'éclipse

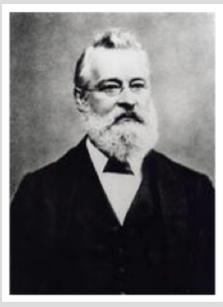
1894 On le trouve sur Terre, en traces avec de l'Argon

Trois classifications périodiques


1862 Alexandre-Émile Béguyer de CHANCOURTOIS

Géologue, il s'intéresse à la possibilité de classer les éléments rencontrés dans la nature

La vis tellurique :


Disposition analogue au bâton de Plutarque

Les éléments analogues passent de l'horizontale à la verticale

Classification par 8

1865 John NEWLANDS

Chimiste anglais, éducation par des professeurs particuliers puis au Royal College of Chemistry de Londres.

Il s'engagera auprès de Garibaldi en 1860.

Les octaves : les propriétés des éléments se reproduisent tous les 8 éléments

Les éléments sont rangés par numéro

No. No		No.	No.		No.		No.		No.		No.		No.	
Ні	F	8	Cl	15	Co	E Ni 22	Br	29	Pd	36	I	42	Pt &	Ir 50
Li 2			K		Cu	23	Rb	30	Ag		~		Os	51
G 3		10	Ca		Zn		Sr	31	Cd	38	Ba & V	45	Hg	52
Bo 4			Cr	19	Y	25	Ce&	La 33	U	40	Ta	46	Tl	53
0 5	Si	12			In	26	Zr	32	sn	39	W	47	Pb	53 54
	P	13	Mn	20	As	27	Di&	Mo 34	8b	41	Nb	48	Bi	55
0 7	s	14	Fe	21	Se	28	Ro &	Russ	Te	43	Au	49	Th	55

Lothar MEYER y était presque...

1865 (Julius) Lothar MEYER

Allemand, fils de médecin et médecin lui-même, se met à la chimie à Heidelberg chez Bunsen et Kirchhoff.

Sa classification ressemble à celle de Mendeleiev mais sans les audaces qui en ont fait le succès.

Voir les polémiques Poincaré / Einstein

Pratiquement en même temps Mendeleiev publiait sa première classification.

FIN DE LA PREMIÈRE PARTIE